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Abstract 
Thermal vibrations of the atoms of a crystal result in 
loss of coherence of a fast electron when it enters the 
crystal. The scattering of the coherent part of the wave 
may be modelled by introducing a correction to the 
time-averaged electrostatic potential of the crystal. The 
correction involves both a real part and an imaginary 
part. The real part is not usually considered in calcu- 
lations of diffracted intensities but for strong scatterers 
such as Au atoms it is sufficiently large that it should be 
measurable by convergent-beam diffraction. 

1. Introduction 
Atomic vibrations have significant effects on the degree 
of coherence of high-energy electrons that have passed 
through a thin foil. Coherent scattering is determined 
by the interaction of the fast electron with the time 
average of the electrostatic potential of the foil. Atomic 
vibrations lead to the introduction of a complex correc- 
tion potential. The amplitude of the wave that remains 
coherent with the incident wave is determined by the 
imaginary part of this potential. 

Theoretical estimates of the absorption potential are 
based on the Born approximation of scattering (Hall 
& Hirsch, 1965), which fails for atoms of high atomic 
number. This paper provides estimates of the correction 
potentials, which are based on the Moli~re or eikonal 
approximation for the scattering of high-energy elec- 
trons (Newton, 1966; Cowley, 1981). The use of this 
scattering approximation leads not only to an imaginary 
correction but also to a real correction to the scattering 
function of an atom. 

The paper is organized as follows. In the next section, 
we derive a formula for the correction potential. Since 
the formula is based on the MoliSre approximation, 
we give the results of some numerical calculations in 
order to justify the use of this approximation. In §3, we 
present estimates of the correction potential based on the 
derived formula for 10, 100 and 300 keV electrons. We 
show that our results are in agreement with previously 
published figures for light elements but are significantly 
different for heavy elements. We point out that the 
differences should be detectable by quantitative analysis 
of convergent-beam diffraction patterns. In the final 

section, we show how multislice programs that are used 
for calculating scattering by long-period structures can 
be modified to include the correction potentials without 
requiring a separate program or table of values. 

2. The effect of thermal motion 
on the atomic scattering function 

When a fast electron, initially travelling in the z direc- 
tion, is scattered by a single atom, the wave function 
at a point R _-- (x, y) in the plane infinitely beyond the 
atom is given, to some reasonable approximation, by 
(Newton, 1966; Cowley, 1981) 

~P(R) = e x p  io- f qo(R,z)dz ~0(R). 
- - ( X )  

(1) 

In this equation, ~(R, z) is the electrostatic potential due 
to an atom and 

~r = 27rme/(hZk=) (2) 

is the interaction constant for high-energy electrons. 
It depends on the relativistic mass m and on the z 
component of the wave vector k, the magnitude of which 
is the reciprocal of the relativistic wavelength A. g'0 (R) is 
the incident wave function on a plane an infinite distance 
in front of the atom. Equation (1) has been estimated to 
be a good approximation provided there is no significant 
scattering of electrons through angles greater than about 
10 ° , although Newton (1966) has argued that it is 
accurate for a much wider range of angles. We have 
attempted to estimate the errors associated with using 
(1) and with the numerical methods used to evaluate the 
integral in (1) by making use of the analytical solution 
that is available for scattering by a point charge (Newton, 
1966). In that case, it is found that the amplitude of 
scattering through an angle 0 is just that predicted by the 
Born approximation but that there is a phase variation, 
depending on the charge and on o-, which is not included 
in the Born approximation. Unfortunately, we cannot 
make direct use of this analytic solution since the integral 
in that equation does not exist for a potential that falls off 
with distance as 1/r, so we consider a modified potential 
for which the angular variation of scattering amplitude 
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can be estimated on physical grounds. This potential has 
Fourier components given by 

#(U) = Z[1 -- e x p ( - C u 2 ) ] / u  2. 

Here, u is a reciprocal-space vector and C is a large 
number. Z is the number of elementary charges. The 
potential is that due to a positive point charge at the ori- 
gin and an equal amount of negative charge distributed 
according to a Gaussian distribution with half-width 
proportional to C j/2. It is reasonable to expect that the 
scattering amplitude at high angles will depend only on 
the positive point charge for which it is known that the 
first Born approximation is sufficient. The variation of 
the phase with scattering angle depends on the long- 
range part of the potential and an analytical expression 
is not available. 

Since our numerical calculations, which are described 
in more detail in §§3 and 4, are based on Fourier 
techniques, we necessarily consider scattering by a per- 
iodic array of cent~es. If the periodicity of the array 
is 4/~, C = 100/~ and the sampling is based on a 
512 × 512 grid then, for 100 keV electrons, for a scat- 
tering centre of 14 elementary charges, the calculation 
of the amplitude using (1) is accurate out to angles 
of 25 °. If a 1024 × 1024 grid is used, the calculation 
of amplitudes is good out to 45 ° . For scattering by 
79 elementary charges, i.e. for a gold nucleus, the 
512 × 512 calculation is accurate out to about 7 °. It 
overestimates the scattering between 7 and 25 ° by up 
to 20% and then underestimates the scattering at higher 
angles. The 1024 × 1024 calculation is good to about 
20 ° . For higher angles, there are variations in amplitude 
of up to 20% from the exact values. The conclusion to be 
drawn from these preliminary calculations is that (1) is 
adequate for calculating the scattering amplitudes except 
for the case of large-angle scattering by heavy elements 
but even then the error in using (1) is no more than about 
20% of relatively small amplitudes. 

We shall write 

+0<3 

q3(R)= f ~(R,z)  dz 
--(X) 

for the projected atomic potential. 
Consider now an assembly of atoms at positions 

(R~ J~, z , )  - (x~ j), y~J~, Zn). z,, is the z coordinate of the 
nth layer and z, < z, + 1. The wave function k~,, (R) on a 
plane between z,, and Zn + 1 may be calculated using an 
approach silrdlar to the multislice algorithm of Cowley 
& Moodie (Cowley, 1981). Given the wave function on 
a plane before the nth plane, the potential due to the 
nth plane and the free-electron propagator Pn (R), which 
describes the propagation of a wave through a distance 
z,, - z ~ _  1, we may write 

~',(R) = exp[it79.(R)] f p , ( R - R ' ) k ~ , _  I (R ' )dR ' .  (5) 

The propagator is given by 

p,,(R) = [ i k / ( z , , - z , , _ , ) ] exp[ i kR2 / ( z , ,  - z , ,_,)]  (6) 
(3) 

and the potential function due to the nth plane of atoms is 

~,,(R) = ~ ~3(R-  RI,J)). (7) 
J 

The exact multislice algorithm of Cowley & Moodie 
requires that the potential be divided into slices of 
thickness Az. The wave function is found by calculat- 
ing the scattering due to a potential slice followed by 
propagation to the next slice and then scattering by that 
slice and so on. The exact wave function is obtained 
by allowing the slice thickness to approach zero. The 
calculation described by (5) is an approximation to the 
exact multislice algorithm since it does not involve 
taking the limit of zero slice thickness. However, it is 
expected to be adequate provided that the range of the 
atomic potentials in the z direction is sufficiently small so 
that the potential between the atomic planes is effectively 
z e r o .  

It is useful to note for later work that we may write 
the scattering function for the nth layer in terms of the 
atomic scattering functions as follows. 

exp[/cr~,(R)] = y[ exp[/o-q~(R- R(J))]. (8) 
J 

If the foil through which the electrons pass consists 
of N planes of atoms, the wave function ON(R ) can be 
used to calculate the image intensity and the intensity of 
the diffraction pattern. The image intensity at position R 
in the image plane is given by 

i(R) = f te, c (R - R')ff'N(R' ) dR' 2, (9) 

where t~ G(R) describes the effects of the objective 
lens with' coefficient of spherical aberration C,- and de- 
focused by an amount e. 

ff we label points within the diffraction pattern by 
two-dimensional reciprocal-space vectors U, the inten- 

(4) sity of the diffracted wave at U is obtained by the Fourier 
transform of the wave function ~N(R). 

/(U) = I f  exp(ZTriU- R)k~N(R ) dR 2. (10) 

In the calculation of both the image intensity by 
using (9) and the intensity in the diffraction pattern by 
using (10), the product of all terms involving either the 
position of layer n or the position of atom j in layer n is 

P n + l ( K + l - R ' n )  " - ' exp[tcrqo(R, - R(nJ))] 

x P , , (K  - R',,_ 1)P* + l(R~'+ a -- R~n ') 

x exp[-io-q~(R~' - R~J3)]p* (R~ ' - R~'_ 1), (11) 

where we have used (5) and (8) to obtain this expression. 



452 CORRECTIONS TO ATOMIC SCATTERING FACTORS 

The observed image and diffracted intensities are 
weighted averages of intensities arising from all possible 
positions of the atoms. The weightings depend on the 
amplitudes of atomic vibrations, which in turn depend 
on the temperature. It will be assumed that each atom 
vibrates independently of all other atoms and the distri- 
bution of deviations of position from the mean is given 
by the Gaussian distribution 

d(r) = (1/27rA2) 3/2 exp(-r2/2A2). (12) 

r is a three-dimensional radial coordinate and A is the 
mean square displacement of an atom in any given 
direction. With this distribution, we can calculate the 
average of the function given in (11) for all values of 
R~ j) and all values of z,. Thus, we include the effects of 
fluctuations in the separation of atomic planes. We shall 
work with Fourier transforms. 

Let #(U) be the Fourier transform of exp[iaq3(R)], 
i.e. the atomic scattering function in the eikonal approxi- 
marion for a stationary atom, and let exp(-1Bu2) be the 
Fourier transform of the distribution function d(r). u is 
a three-dimensional reciprocal-space vector and 

B = 871-2A 2 (13) 

is the standard thermal parameter of crystallography. 
The Fourier transform of the propagator p, (R) is 

Pn(U) = exp[-iTrAUe(zn - z ,_ 1)]. (14) 

The average of (11) is found by convoluting it with the 
Gaussian distribution (12). Making use of the convo- 
lution theorem for Fourier transforms and with further 
details given in Appendix A, we obtain 

Pn+ 1(R~, +1 - R~,) f dU'exp[-27riU'. ( R ' -  R~))] 

' ' ' * " - R ~ ' )  × ~(U )pn(R, - R n - I)P, + l(Rn +, 

× f dU" exp[27riU". ( R " -  R~))]~*(U '') 
• ['r~ll II 

× Pn~l% -- R n - 1 ) e x p { - ¼ n ( u '  - U / l )  2 

i e ,2 u,'2)2]} × [ I + ~ A  (U - . (15) 

We have introduced the mean coordinates 
(J) (J) (J)).. o " Rn -- XeQ, YeQ of atom j. The usual Debye-Waller 

facqtor e(xPi-¼Bt/') appears in modified form with an 
1 2 2 additional factor (1 + ~ A U ), which is related to the 

surface of the Ewald sphere. This factor gives a good 
approximation to the Ewald sphere provided U is not 
too large. It arises as a result of variations in the z 
direction of an atom with mean position z, and is just 
the convolution of the Gaussian distribution (12) with 
the Fourier transform of the propagator (14). 

By consideration of the last exponential term in (15), 
it can be seen that factors such as exP(½BU'. U") are 
present. By ex°panding this term in powers of B, we 

obtain an expression for the total scattering in terms of 
contributions from thermal scattering of all orders. The 
nth-order thermal scattering refers to a multiscattering 
process in which the electron interacts with the crystal 
and causes n changes to the vibrational state of the 
crystal. Electrons that have undergone thermal scattering 
of a certain order are incoherent with electrons that have 
undergone thermal scattering of a different order so that 
the total intensity is a sum of intensities of electrons 
associated with each order of scattering. Here, we restrict 
our considerations to the calculation of the scattering 
of electrons that remain coherent with the incident 
wave (zeroth-order scattering). The expansion of this 
exponential term in powers of B is then approximated 
by unity so that (15) factorizes into a function of U t and 
a function of U". Equation (15) is approximated by 

Pn+ l ( R t n  + 1 - Rtn) f d U !  exp[-27riU'. ( R ' -  R~))] 
1 2 t2 × q~(U')exp[-¼BU'2(1 + -~,~ U )] 

× Pn(R'. - R'n_ ,)p~ + I ( R t n t +  1 - -  R~n ') 

× f dU"exp[27riU". ( a " -  R~))]#*(U '') 
* 1 2 it2 × p.(R~n ' -  R~'_,)exp[-¼BU"2(1 + ~.~ U )]. (16) 

Taking the inverse Fourier transform of the function of 
R ( j )  which we U', say, we obtain a function of R~, - --eq, 

write as 

(exp[i°@(R~,, - R~))])P, (R~,, - R~n-l), (17) 

where 

(exp[io-q~(R)]) = f dU exp(-27riU • R)~(U) 

× exp[-¼BUe(1 + ¼A2U'2)]. (18) 

The angular brackets define a type of thermal average. 
It is an average for a single atom within a crystal, the 
interplanar distances of which are fluctuating due to 
thermal vibrations. 

This thermally averaged atomic scattering function 
can be expressed in terms of (q3(R)), the thermal av- 
erage of the projected atomic potential, by introducing a 
correction potential i#(R) (Cowley, 1981). 

(exp[io-q~(R)]) = exp{ia[(q~(R)) + i/z(R)]}. (19) 

The relationship between /z(R) and the normally 
employed corrections to the real scattering function can 
be seen by expanding (19) to second order in o-. We find 

#(R) ='~cr [(q~(R) e) - (q3(R))2]. (20) 

The Fourier transform of this function is 

M(U) = l  7or J' dU'V(U - U') V(U') 

× (exp[-¼BU2(1 + ¼AEu2)] 

- e x p { - ¼ B ( U -  U')2[1 + ¼)~2(U - U')e]} 

× exp[-¼BU'2(1 + ~A2U'2)]], (21) 
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where V(U) is the Fourier coefficient of the atomic 
potential. Equation (21) is similar to the expression used 
by Hall & Hirsch (1965) and other authors, including 
most recently Bird & King (1990) and Dudarev, Peng 
& Whelan (1995) to calculate corrections to the real 
scattering function that arise from thermal vibrations. 
The difference between the previous expression and ours 
is that the range of integration in (21) is over a plane 
in reciprocal space, whereas in the earlier expression the 
range is the surface of the Ewald sphere. We have partly 
accounted for the Ewald sphere as we explained after 
(15), but in (21) the Fourier coefficients of the potential 
are evaluated at points on a plane rather than on the 
Ewald sphere. The difference arises because we have 
assumed that all scattering by an atom has occurred 
over an infinitesimally small distance in the direction 
of the electron beam. Alternatively, we may say that the 
scattering function of a single atom in reciprocal space 
varies infinitesimally slowly with u in the direction 
perpendicular to the UxUy plane. 

Equation (19) includes corrections to the mean poten- 
tial in addition to that given by (20). We could choose 
to expand (19) to higher orders in cr to see under what 
situations further corrections may be significant but we 
will choose instead to work numerically and some results 
are given in the next section. 

If (19) is solved for/~(R), we obtain 

/~(R) = -( l /or) ln(exp[kr~(R)])  + i(~3(R)). (22) 

#(R) is a complex function. Its real part is related 
to the reduction in amplitude of the scattered wave 
that is coherent with the incident wave. The imaginary 
part is related to phase changes in the coherent part 
of the electron beam brought about by the vibrations 
of the atom. It arises from thermal scattering of ther- 
mally scattered electrons and such scattering is neglected 
in previous studies. Rigorous derivations of previous 
expressions for the correction potential (e.g. Yoshioka 
& Kainuma, 1962) have been based on the work of 
Yoshioka (1957), who makes explicit his assumption 
that the contributions of double inelastic scattering is 
negligible. In this work, we have taken account of such 
scattering events but our calculations are restricted by 
the assumption that the atomic potential has a very small 
range in the direction of the incident beam. A rigorous 
derivation of the correction potential is desirable. It 
could be achieved through an extension of Yoshioka's 
work or by a consideration of the multislice method. 
In the latter case, the derivation will be necessarily 
restricted to small-angle scattering. 

3. Numerical estimates of the correction potential 

We use (22) to calculate corrections to the Fourier coef- 
ficients of the potential of several crystalline materials. 
The atomic scattering factors ~(U) are calculated using 

Table 1. Corrections to the Fourier components of the 
potential of crystalline aluminium as determined by the 

present theory and by Bird & King (1990) 

Values are in V. ,4 l ---- 0.0105/~2 

G Present Bird & King 

000 0.015 + i0.162 i0.164 
111 0.014 + i0. i 44 i0.145 
400 0.010 + /0 .097  i0.097 
444 0.005 + i0.042 i0.042 
933 0.002 + i0.011 i0.011 

Table 2. Corrections to the potential of crystalline gold 

Values are in V. A 2 = 0.0074 ,~2. 

G Present Bird & King 

000 2.11 + il.05 i2.859 
111 1.01 + il.96 i2.683 
400 0.84 + il.48 i2.087 
444 0.54 + i0.82 il.209 
933 0.26 + i0.35 i0.534 

the parameters for scattering of X-rays given by Doyle 
& Turner (1968). The parameters given by Doyle & 
Turner apply only in the range s -- sin(0)/A < 2/~-1.  
Fox, O'Keefe & Tabbernor (1989) give parameters for 
the range 2 < s < 6 /~ - i .  For larger values of s, it is 
assumed that there is no significant scattering of X-rays. 
The electron scattering factors are then calculated using 
Mott's formula: 

f e ( s )  - -  (me2/2h2)(1/s)2[Z- fX(s)]. (23) 

Table 1 shows the corrections, in V, to the Fourier 
coefficients of the time-averaged potential of crystalline 
aluminium for 100 keV electrons. The calculations were 
performed by constructing atomic scattering functions 
from Fourier coefficients V(U) with U < 21/~-  1. It was 
found that doubling the maximum value of U did not 
change the results significantly. The results of Bird & 
King (1990) are also given in Table 1. 

Table 1 shows that the results of the present method 
are essentially identical to those calculated assuming the 
first Born approximation as far as the imaginary part of 
the correction potential is concerned. There is a small 
correction of a few parts in a thousand to the real part 
of the potential. 

Table 2 shows that for a heavy element, gold, the 
corrections to the real part of the potential are a few parts 
in a hundred and that there are significant differences 
in the imaginary potential between the results of the 
present calculations and those of Bird & King. These 
differences arises from higher-order terms in the Born 
series for scattering. 

In Table 3, we show the effects of changing the 
energy of the electrons on the correction potential for 
silicon. 10keV is a typical energy used in RHEED 



454 CORRECTIONS TO ATOMIC SCATTERING FACTORS 

Table 3. Corrections to the potential of crystalline 
silicon for three values of energy 

Values are in v. A 2 = 0.0058 A 2. 

G 10 keV 100 keV 300 keV 
000 0.06 + i0.30 0.010 + i0.111 0.005 + i0.079 
111 0.04 + i0.20 0.007 + i0.075 0.003 + i0.053 
400 0.05 + i0.23 0.009 + i0.088 0.004 + i0.062 
444 0.04 + i0.17 0.007 + i0.063 0.003 + i0.045 
933 0.02 + i0.07 0.004 + i0.028 0.002 + i0.020 

experiments and 300 keV is often used in convergent- 
beam electron diffraction for precise estimates of the 
Fourier coefficients of potential (Spence & Zuo, 1994). 

Table 3 shows that at 10 keV the correction to the 
real part amounts to a few parts in a hundred while 
at 300keV it is a few parts in a thousand. This is 
similar to the precision claimed for measurements of 
Fourier coefficients of the potential by convergent-beam 
electron diffraction (Saunders, Bird, Midgley & Vincent, 
1994), so it should be possible to measure the correction 
terms predicted in this paper. Any such measurement 
would have to take into account corrections to the real 
potential due to the excitation of single electrons by the 
fast electron. Rez (1978), using a formula of Yoshioka 
(1957), has calculated these corrections to the low-order 
Fourier coefficients of crystals of silicon, copper and 
germanium to be of the order of a few parts in a 
thousand. 

4. Inclusion of thermal effects 
in multislice calculations 

We showed in the previous section that to a 
good approximation the atomic scattering function, 
(exp[io-~(R)]), can be obtained from the discrete 
Fourier transform of the projected atomic potential 
q3 evaluated on a two-dimensional grid of points in 
reciprocal space. The transform is then multiplied 
by the temperature factor e x p [ - i  e ~BU (1 + ¼A2U=)] 
and the inverse transform found. These are the types 
of operation performed in standard algorithms for 
calculating the potential. To calculate the scattering 
due to a layer when there are atoms at positions R (j) 
within the layer, it is necessary to shift the scattering 
function to be centred on each atomic position. The 
scattering due to a layer, viz 

1-I (exp[io-qa(R - R~{))]), (24) 
J 

is then the input into a standard multislice algorithm for 
the scattering. There is then no need to specifically make 
use of a separate program for calculating corrections to 
the real potential. 

In conclusion, the effects of thermal vibrations can be 
readily calculated by the techniques used in the multi- 
slice method. The resulting corrections to the scattering 

potential depend on the energy of the electrons and 
this dependence on energy should be measurable by 
convergent-beam diffraction at least for heavy elements. 

I thank Dr C. J. Rossouw of CSIRO, Division of 
Materials Science and Technology, for a very helpful 
discussion and members of the Electron Microscope 
Unit of the University of Sydney for their hospitality 
during the period when much of this work was carried 
out. 

APPENDIX A 

Equation (11) is derived from (5) and (8). Equation (5) 
implies 

g',, +, (R) = exp[icr~,, +1 (R)] f dR'pn +, (R - R') 

x exp[io-~n(R')] f d R " p n ( a '  - R") 

x ~n _ l ( a " ) .  (25) 

Using (8) and retaining only those terms involving R~ j) 
and zn, we are led to consider 

f dR'p~ + 1(R - R')exp[icrg3(R' - R~J))] 

x f d R " p , , ( R ' -  R " ) ~ _  1 (R").  (26) 

Introducing ~ (U), the Fourier transform of exp [icr qa (R)], 
we can express (26) as 

f dR' f dU'exp[-27r iU' .  ( R -  a')]P,,  +1 (U') 

x f OV' exp[ -2r r iV ' .  ( a ' -  alzJ))]gi(V ') 

x f dR" f dW' exp[ -2rc iW' .  ( a ' -  R")]Pn(W' ). 

(27) 

The integration with respect to R'  produces a 6 function 
6 ( U ' - V ' - W ' ) .  Integration with respect to U ~ and using 
(14) for the Fourier transform of the propagator gives 

f d V ' f  OW' exp[-27ri(V' + W ' ) .  R] 

x exp[-iTrA(V' + W')2(z~ +l - z,,)] 

x exp(27riV' • R(~J))~(V ') exp(27riW' • R")  

x exp[-iTrAW'2(zn- z,~_ ~)]. (28) 

We are interested in determining the intensity of the elec- 
tron wave and so we multiply the above expression by a 
similar one involving complex conjugates. There are two 
new integration variables V" and W"  in the resulting 
expression. The weighted average of this expression, 
considered as a function of R,(, j) and z,,, is obtained 
by performing a convolution with the distribution (12), 
which descibes the probability of an atom being dis- 
placed a certain distance from its equilibrium position. 
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Averaging first over the values of R~ j3 and making use 
of the convolution theorem for Fourier transforms, we 
obtain the terms 

exp[-  4X-B(V ' -  V") z] exp[-iTrA(V' + W')2(z,, +, - zn)] 

× exp(ZTriV' • R~'))~(V ') exp[-iTrAW~2(z,, - zn_ ,)] 

× exp[iTrA(V" + W")Z(zn +l - zn)] 

× exp(-ZTriV". R~))~*(V '') 

× exp[iTrAW"2(z, - z ,_ l)], (29) 

where R (j) is the mean position of atom j in layer n. --eq 
Then, averaging over all values of z,,, we obtain the 

terms 

exp[-  ¼B(V' - V") 2] exp(27riV'. R~))~/i(V ') 

× exp(-27r/V".  R(J~)~f*(V")exp{-~6BA 2 --eq 

x [(v'  + w ' )  2 - w '2 - ( v "  + w " )  2 + 

' ' * ( V "  × Pn +l ( v t  + W )Pn(W )Pn +1 + wtl) P* (Wtt)" 

(30) 

We can write the first exponential in (30) as a sum 
of products of V' and of V" by expanding the term 
exp(1 ' ~BV • V"), which comes from the first exponential 
in the equation, as a power series in B. In a similar way, 
we can express the last exponential in (30) as a sum of 
products of functions of V', V", V' • W'  and V" • W". 
In the resulting expression, B occurs either as part of 
the Debye-Waller factor or as an integral power of B. 
The term in which B occurs only in the Debye-Waller 
factor is a contribution to the intensity from the wave 
that is coherent with the incident beam. The next term in 
which B also occurs raised to the power one represents 
the contribution from single thermal diffuse scattering. 
The term in which it is raised to the power two involves 
diffuse scattering of diffuse scattering and so on. The 
contributions are added incoherently. 

Here, we consider only the contribution to the total 
scattering from the coherent or elastically scattered wave 
and obtain 

f dV' f dW' exp[-27ri(V' + W ' ) .  R]P,, +1 (V' + W')  
× exp ( -  I 2 t4 TgBA V ) exp(27riV' • R~))~f(V ') 

× e x p ( - l  t2 ~BV ) exp(27riW' • R")P,,(W') (31) 

and a similar expression involving complex conjugates. 
Equation (31) is of the same form as (28) and we 

can reverse the steps leading to the derivation of this 
equation from (25) to obtain an expression for ~P~el)(R), 
the wave function of the coherent (elastically scattered) 
electrons at layer n in terms of the wave function at 
layer n - 1: 

k~e0(R) = 1--[ (exp[icrq~(R - R~))]) 
J 

× f dR1p,,(R , ~e,) - R )~P~-1 (R' ) ,  (32) 

where ( ) indicates the average defined by (18). 
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